[1] Adam, K. C., & Serences, J. T. (2021). History modulates early sensory processing of salient distractors. Journal of Neuroscience, 41(38), 8007-8022. [2] Allen, R. J., & Ueno, T. (2018). Multiple high-reward items can be prioritized in working memory but with greater vulnerability to interference. Attention, Perception, and Psychophysics, 80(7), 1731-1743. [3] Belopolsky, A. V., & Theeuwes, J. (2010). No capture outside the attentional window. Vision Research, 50(23), 2543-2550. [4] Chun M. M., Golomb J. D., & Turk-Browne N. B. (2011). A taxonomy of external and internal attention. Annual Review of Psychology, 62, 73-101. [5] Huffman G., Rajsic J., & Pratt J. (2019). Ironic capture: top-down expectations exacerbate distraction in visual search. Psychological Research, 83(5), 1070-1082. [6] Ketelsen, K., & Welsh, M. (2010). Working memory and mental arithmetic: A case for dual central executive resources. Brain and Cognition, 74(3), 203-209. [7] Lahav, A., & Tsal, Y. (2013). Allocating attention to distractor locations is based on top-down expectations. Quarterly Journal of Experimental Psychology, 66(9), 1873-1880. [8] Lavie N., Hirst A., de Fockert J. W., & Viding E. (2004). Load theory of selective attention and cognitive control. Journal of Experimental Psychology: General, 133(3), 339-354. [9] Miller E. K., Li L., & Desimone R. (1991). A neural mechanism for working and recognition memory in inferior temporal cortex. Science, 254(5036), 1377-1379. [10] Miller E. K., Erickson C. A., & Desimone R. (1996). Neural mechanisms of visual working memory in prefrontal cortex of the macaque. Journal of Neuroscience, 16(16), 5154-5167. [11] Miyake A., Friedman N. P., Emerson M. J., Witzki A. H., Howerter A., & Wager T. D. (2000). The unity and diversity of executive functions and their contributions to complex “frontal lobe” tasks: A latent variable analysis. Cognitive Psychology, 41(1), 49-100. [12] Moher, J., & Egeth, H. E. (2012). The ignoring paradox: Cueing distractor features leads first to selection, then to inhibition of to-be-ignored items. Attention, Perception, and Psychophysics, 74(8), 1590-1605. [13] Raye C. L., Johnson M. K., Mitchell K. J., Greene E. J., & Johnson M. R. (2007). Refreshing: A minimal executive function. Cortex, 43(1), 135-145. [14] Roth J. K., Johnson M. K., Raye C. L., & Constable R. T. (2009). Similar and dissociable mechanisms for attention to internal versus external information. NeuroImage, 48(3), 601-608. [15] Souza, A. S., & Oberauer, K. (2017). The contributions of visual and central attention to visual working memory. Attention, Perception, and Psychophysics, 79(7), 1897-1916. [16] Theeuwes, J. (1992). Perceptual selectivity for color and form. Perception and Psychophysics, 51(6), 599-606. [17] Theeuwes, J. (2010). Top-down and bottom-up control of visual selection. Acta Psychologica, 135(2), 77-99. [18] Tsal, Y., & Makovski, T. (2006). The attentional white bear phenomenon: the mandatory allocation of attention to expected distractor locations. Journal of Experimental Psychology: Human Perception and Performance, 32(2), 351-363. [19] Vatterott D. B., Mozer M. C., & Vecera S. P. (2018). Rejecting salient distractors: Generalization from experience. Attention, Perception, and Psychophysics, 80(2), 485-499. [20] Vatterott, D. B., & Vecera, S. P. (2012). Experience-dependent attentional tuning of distractor rejection. Psychonomic Bulletin and Review, 19(5), 871-878. [21] Verschooren S., Liefooghe B., Brass M., & Pourtois G. (2019). Attentional flexibility is imbalanced: Asymmetric cost for switches between external and internal attention. Journal of Experimental Psychology: Human Perception and Performance, 45(10), 1399-1414. [22] Verschooren S., Pourtois G., & Egner T. (2020). More efficient shielding for internal than external attention? Evidence from asymmetrical switch costs. Journal of Experimental Psychology: Human Perception and Performance, 46(9), 912-925. [23] Weber R. J., Burt D. B., & Noll N. C. (1986). Attention switching between perception and memory. Memory and Cognition, 14(3), 238-245. [24] Wegner D. M., Schneider D. J., Carter S. R., & White T. L. (1987). Paradoxical effects of thought suppression. Journal of Personality and Social Psychology, 53(1), 5-13. [25] Wen W., Hou Y., & Li S. (2018). Memory guidance in distractor suppression is governed by the availability of cognitive control. Attention, Perception, and Psychophysics, 80(5), 1157-1168. [26] Westerberg J. A., Cox M. A., Dougherty K., & Maier A. (2019). V1 microcircuit dynamics: Altered signal propagation suggests intracortical origins for adaptation in response to visual repetition. Journal of Neurophysiology, 121(5), 1938-1952. [27] Wolfe, J. M. (2021). Guided Search 6.0: An updated model of visual search. Psychonomic Bulletin and Review, 28(4), 1060-1092. [28] Won, B. Y., & Geng, J. J. (2020). Passive exposure attenuates distraction during visual search. Journal of Experimental Psychology: General, 149(10), 1987-1995. |