[1] 刘远文, 方杰, 姜荣荣, 胡楠, 潘翠环, 叶正茂, 罗丽娟. (2017). 高频重复经颅磁刺激对脑卒中患者执行功能的影响. 中华神经科杂志, 50(10), 745-750. [2] 周婷, 巩尊科, 王世雁, 王密, 汪艳. (2017). 重复经颅磁刺激对脑卒中后执行功能障碍的影响. 实用医学杂志, 33(7), 1036-1039. [3] 邹淑怡, 唐志明, 李鑫, 安德连, 曾妍, 曾佩珊, 温红梅. (2019). rTMS治疗基底节区脑出血后遗症期患者执行功能障碍1例报告. 中国实用神经疾病杂志, 22(8), 905-909. [4] Amodeo L. R., McMurray M. S., & Roitman J. D. (2017). Orbitofrontal cortex reflects changes in response-outcome contingencies during probabilistic reversal learning. Neuroscience, 345, 27-37. [5] Aquili L., Liu A. W., Shindou M., Shindou T., & Wickens J. R. (2014). Behavioral flexibility is increased by optogenetic inhibition of neurons in the nucleus accumbens shell during specific time segments. Learning and Memory, 21(4), 223-231. [6] Asgharian Asl, F., & Vaghef, L. (2022). The effectiveness of high-frequency left DLPFC-rTMS on depression, response inhibition, and cognitive flexibility in female subjects with major depressive disorder. Journal of Psychiatric Research, 149, 287-292. [7] Botvinick, M., & Braver, T. (2015). Motivation and cognitive control: From behavior to neural mechanism. Annual Review of Psychology, 66, 83-113. [8] Bressler, S. L., & Menon, V. (2010). Large-scale brain networks in cognition: Emerging methods and principles. Trends in Cognitive Sciences, 14(6), 277-290. [9] Cole M. W., Reynolds J. R., Power J. D., Repovs G., Anticevic A., & Braver T. S. (2013). Multi-task connectivity reveals flexible hubs for adaptive task control. Nature Neuroscience, 16(9), 1348-1355. [10] Cools R., Clark L., Owen A. M., & Robbins T. W. (2002). Defining the neural mechanisms of probabilistic reversal learning using event-related functional magnetic resonance imaging. Journal of Neuroscience, 22(11), 4563-4567. [11] Cui, H., & Andersen, R. A. (2011). Different representations of potential and selected motor plans by distinct parietal areas. Journal of Neuroscience, 31(49), 18130-18136. [12] Dosenbach N. U. F., Fair D. A., Miezin F. M., Cohen A. L., Wenger K. K., Dosenbach R. A. T., & Petersen S. E. (2007). Distinct brain networks for adaptive and stable task control in humans. Proceedings of the National Academy of Sciences of the United States of America, 104(26), 11073-11078. [13] Dosenbach N. U. F., Visscher K. M., Palmer E. D., Miezin F. M., Wenger K. K., Kang H. C., & Petersen S. E. (2006). A core system for the implementation of task sets. Neuron, 50(5), 799-812. [14] Dreher, J. C., & Grafman, J. (2003). Dissociating the roles of the rostral anterior cingulate and the lateral prefrontal cortices in performing two tasks simultaneously or successively. Cerebral Cortex, 13(4), 329-339. [15] Fregni F., Boggio P. S., Nitsche M., Bermpohl F., Antal A., Feredoes E., & Pascual-Leone A. (2005). Anodal transcranial direct current stimulation of prefrontal cortex enhances working memory. Experimental Brain Research, 166(1), 23-30. [16] Gazzaniga, M. S. (2000). Cerebral specialization and interhemispheric communication: Does the corpus callosum enable the human condition? Brain, 123, 1293-1326. [17] Giggins O. M., Persson U. M., & Caulfield B. (2013). Biofeedback in rehabilitation. Journal of NeuroEngineering and Rehabilitation, 10, Article 60. [18] Hippmann B., Kuhlemann I., Bäumer T., Bahlmann J., Münte T. F., & Jessen S. (2019). Boosting the effect of reward on cognitive control using TMS over the left IF[J]. Neuropsychologia, 125, 109-115. [19] Hoshi, E. (2006). Functional specialization within the dorsolateral prefrontal cortex: A review of anatomical and physiological studies of non-human primates. Neuroscience Research, 54(2), 73-84. [20] Ilieva I. P., Alexopoulos G. S., Dubin M. J., Morimoto S. S., Victoria L. W., & Gunning F. M. (2018). Age-related repetitive transcranial magnetic stimulation effects on executive function in depression: A systematic review. American Journal of Geriatric Psychiatry, 26(3), 334-346. [21] Izquierdo A., Brigman J. L., Radke A. K., Rudebeck P. H., & Holmes A. (2017). The neural basis of reversal learning: An updated perspective. Neuroscience, 345, 12-26. [22] Karim A. A., Schneider M., Lotze M., Veit R., Sauseng P., Braun C., & Birbaumer N. (2010). The truth about lying: Inhibition of the anterior prefrontal cortex improves deceptive behavior. Cerebral Cortex, 20(1), 205-213. [23] Kaster T. S., Chen L., Daskalakis Z. J., Hoy K. E., Blumberger D. M., & Fitzgerald P. B. (2020). Depressive symptom trajectories associated with standard and accelerated rTMS. Brain Stimulation, 13(3), 850-857. [24] Kaur M., Naismith S. L., Lagopoulos J., Hermens D. F., Lee R. S. C., Carpenter J. S., & Hickie I. B. (2019). Sleep-wake, cognitive and clinical correlates of treatment outcome with repetitive transcranial magnetic stimulation for young adults with depression. Psychiatry Research, 271, 335-342. [25] Leite J., Carvalho S., Fregni F., Boggio P. S., & Gonçalves Ó. F. (2013). The effects of cross-hemispheric dorsolateral prefrontal cortex transcranial direct current stimulation (tDCS) on task switching. Brain Stimulation, 6(4), 660-667. [26] Li B. K., Liu H. H., Pérez A., & Xie N. (2018). Cathodal transcranial direct current stimulation over right dorsolateral prefrontal cortex improves language control during language switching. Behavioural Brain Research, 351, 34-41. [27] Long H., Wang H. B., Zhao C. G., Duan Q., Feng F., Hui N., & Yuan H. (2018). Effects of combining high- and low-frequency repetitive transcranial magnetic stimulation on upper limb hemiparesis in the early phase of stroke. Restorative Neurology and Neuroscience, 36(1), 21-30. [28] Miller, E. K., & Cohen, J. D. (2001). An integrative theory of prefrontal cortex function. Annual Review of Neuroscience, 24, 167-202. [29] Miyake, A., & Friedman, N. P. (2012). The nature and organization of individual differences in executive functions: Four general conclusions. Current Directions in Psychological Science, 21(1), 8-14. [30] Moos K., Vossel S., Weidner R., Sparing R., & Fink G. R. (2012). Modulation of top-down control of visual attention by cathodal tDCS over right IPS. Journal of Neuroscience, 32(46), 16360-16368. [31] Muhle-Karbe P. S., Andres M., & Brass M. (2014). Transcranial magnetic stimulation dissociates prefrontal and parietal contributions to task preparation. Journal of Neuroscience, 34(37), 12481-12489. [32] Nejati V., Salehinejad M. A., Nitsche M. A., Najian A., & Javadi A. H. (2020). Transcranial direct current stimulation improves executive dysfunctions in ADHD: Implications for inhibitory control, interference control, working memory, and cognitive flexibility. Journal of Attention Disorders, 24(13), 1928-1943. [33] Nitsche, M. A., & Paulus, W. (2000). Excitability changes induced in the human motor cortex by weak transcranial direct current stimulation. Journal of Physiology, 527(3), 633-639. [34] Ouellet J., McGirr A., van den Eynde F., Jollant F., Lepage M., & Berlim M. T. (2015). Enhancing decision-making and cognitive impulse control with transcranial direct current stimulation (tDCS) applied over the orbitofrontal cortex (OFC): A randomized and sham-controlled exploratory study. Journal of Psychiatric Research, 69, 27-34. [35] Ozcan S., Gica S., & Gulec H. (2020). Suicidal behavior in treatment resistant major depressive disorder patients treated with transmagnetic stimulation(TMS) and its relationship with cognitive functions. Psychiatry Research, 286, Article 112873. [36] Palaus M., Viejo-Sobera R., Redolar-Ripoll D., & Marrón E. M. (2020). Cognitive enhancement via neuromodulation and video games: Synergistic effects? Frontiers in Human Neuroscience, 14, Article 235. [37] Parris B. A., Wadsley M. G., Hasshim N., Benattayallah A., Augustinova M., & Ferrand L. (2019). An fMRI study of response and semantic conflict in the stroop task. Frontiers in Psychology, 10, Article 2426. [38] Soyata A. Z., Aksu S., Woods A. J., İşçen P., Saçar K. T., & Karamürsel S. (2019). Effect of transcranial direct current stimulation on decision making and cognitive flexibility in gambling disorder. European Archives of Psychiatry and Clinical Neuroscience, 269(3), 275-284. [39] Stelzel C., Basten U., & Fiebach C. J. (2011). Functional connectivity separates switching operations in the posterior lateral frontal cortex. Journal of Cognitive Neuroscience, 23(11), 3529-3539. [40] Tayeb, Y., & Lavidor, M. (2016). Enhancing switching abilities: Improving practice effect by stimulating the dorsolateral pre frontal cortex. Neuroscience, 313, 92-98. [41] Tseng P., Hsu T. Y., Chang C. F., Tzeng O. J. L., Hung D. L., Muggleton N. G., & Juan C. H. (2012). Unleashing potential: Transcranial direct current stimulation over the right posterior parietal cortex improves change detection in low-performing individuals. Journal of Neuroscience, 32(31), 10554-10561. [42] Vallortigara, G. (2006). The evolutionary psychology of left and right: Costs and benefits of lateralization. Developmental Psychobiology, 48(6), 418-427. [43] Ware A., Lum J. A. G., & Kirkovski M. (2021). Continuous theta-burst stimulation modulates language-related inhibitory processes in bilinguals: Evidence from event-related potentials. Brain Structure and Function, 226(5), 1453-1466. |