[1] 丁树良, 罗芬, 汪文义, 熊建华. (2019). 0-1评分认知诊断测验设计. 江西师范大学学报(自然科学版), 43(5), 441-447. [2] 丁树良, 汪文义, 杨淑群. (2011). 认知诊断测验蓝图的设计. 心理科学, 34(2), 258-265. [3] 罗芬, 王晓庆, 蔡艳, 涂冬波. (2020). 基于基尼指数的双目标CD-CAT选题策略. 心理学报, 52(12), 1452-1465. [4] 涂冬波, 蔡艳, 戴海琦, 丁树良. (2011). HO-DINA模型的MCMC参数估计及模型性能研究. 心理科学, 34(6), 1476-1481. [5] 汪大勋, 涂冬波. (2021). 认知诊断计算机化自适应测量技术在心理障碍诊断与评估中的应用. 江西师范大学学报(自然科学版), 45(2), 111-117. [6] 王璞珏, 刘红云. (2019). 让自适应测验更知人善选——基于推荐系统的选题策略. 心理学报, 51(9), 1057-1067. [7] 韦来生. (2016). 贝叶斯统计. 高等教育出版社. [8] 詹沛达, 潘艳方, 李菲茗. (2021). 面向“为学习而测评”的纵向认知诊断模型. 心理科学, 44(1), 214-222. [9] 中共中央, 国务院. (2020-10-14). 中共中央国务院印发深化新时代教育评价改革总体方案. 人民日报. [10] Akbay, L., & Kaplan, M. (2017). Transition to multidimensional and cognitive diagnosis adaptive testing: An overview of CAT. The Online Journal of New Horizons in Education, 7(1), 206-214. [11] Ames, A. J., & Penfield, R. D. (2015). An NCME instructional module on item-fit statistics for item response theory models. Educational Measurement: Issues and Practice, 34(3), 39-48. [12] Baker F. B.& Kim, S. H. (2004). Item response theory: Parameter estimation techniques CRC Press Parameter estimation techniques. CRC Press. [13] Bao Y., Shen Y. W., Wang S. Y., & Bradshaw L. (2021). Flexible computerized adaptive tests to detect misconceptions and estimate ability simultaneously. Applied Psychological Measurement, 45(1), 3-21. [14] Bradshaw, L., & Templin, J. (2013). Combining item response theory and diagnostic classification models: A psychometric model for scaling ability and diagnosing misconceptions. Psychometrika, 79(3), 403-425. [15] Chen, J. S., & de la Torre, J. (2018). Introducing the general polytomous diagnosis modeling framework. Frontiers in Psychology, 9, Article 1474. [16] Dai B. Y., Zhang M. Q., & Li G. M. (2016). Exploration of item selection in dual-purpose cognitive diagnostic computerized adaptive testing: Based on the RRUM. Applied Psychological Measurement, 40(8), 625-640. [17] de la Torre, J., & Douglas, J. A. (2004). Higher-order latent trait models for cognitive diagnosis. Psychometrika, 69(3), 333-353. [18] Gelman A., Carlin J. B., Stern H. S., Dunson D. B., Vehtari A., & Rubin, D. B. (2013). Bayesian data analysis. CRC Press. [19] Gitomer, D. H., & Yamamoto, K. (1991). Performance modeling that integrates latent trait and class theory. Journal of Educational Measurement, 28(2), 173-189. [20] Givens, G. H., & Hoeting, J. A. (2013). Computational statistics. John Wiley & Sons, Inc. [21] Haertel, E. H. (1989). Using restricted latent class models to map the skill structure of achievement items. Journal of Educational Measurement, 26(4), 301-321. [22] Henson R. A., Templin J. L., & Willse J. T. (2009). Defining a family of cognitive diagnosis models using log-linear models with latent variables. Psychometrika, 74(2), 191-210. [23] Hong H., Wang C., Lim Y. S., & Douglas J. (2015). Efficient models for cognitive diagnosis with continuous and mixed-type latent variables. Applied Psychological Measurement, 39(1), 31-43. [24] Hsu, C. L., & Wang, W. C. (2015). Variable-length computerized adaptive testing using the higher order DINA model. Journal of Educational Measurement, 52(2), 125-143. [25] Huang, H. Y. (2017). Multilevel cognitive diagnosis models for assessing changes in latent attributes. Journal of Educational Measurement, 54(4), 440-480. [26] Junker, B. W., & Sijtsma, K. (2001). Cognitive assessment models with few assumptions, and connections with nonparametric item response theory. Applied Psychological Measurement, 25(3), 258-272. [27] Kang H. A., Zhang S. S., & Chang H. H. (2017). Dual-objective item selection criteria in cognitive diagnostic computerized adaptive testing. Journal of Educational Measurement, 54(2), 165-183. [28] Lee, S. Y. (2017). Growth curve cognitive diagnosis models for longitudinal assessment(Unpublished doctoral dissertation). University of California, Berkeley. [29] Ma, W. C., & de la Torre, J. (2016). A sequential cognitive diagnosis model for polytomous responses. British Journal of Mathematical and Statistical Psychology, 69(3), 253-275. [30] Ma, W. C., & de la Torre, J. (2020). GDINA: An R package for cognitive diagnosis modeling. Journal of Statistical Software, 93(14), 1-26. [31] McGlohen, M., & Chang, H. H. (2008). Combining computer adaptive testing technology with cognitively diagnostic assessment. Behavior Research Methods, 40(3), 808-821. [32] Patz, R. J. & Junker, B. W. (1999). A straightforward approach to Markov chain Monte Carlo methods for item response models. Journal of Educational and Behavioral Statistics, 24(2), 146-178. [33] Rupp A. A., Templin J., & Henson, R. A. (2010). Diagnostic measurement: Theory, methods, and applications Guilford Press Theory, methods, and applications. Guilford Press. [34] Sorrel M. A., Abad F. J., & Nájera P. (2021). Improving accuracy and usage by correctly selecting: The effects of model selection in cognitive diagnosis computerized adaptive testing. Applied Psychological Measurement, 45(2), 112-129. [35] Wang C., Chang H. H., & Douglas J. (2012). Combining CAT with cognitive diagnosis: A weighted item selection approach. Behavior Research Methods, 44(1), 95-109. [36] Wang C., Zheng C. J., & Chang H. H. (2014). An enhanced approach to combine item response theory with cognitive diagnosis in adaptive testing. Journal of Educational Measurement, 51(4), 358-380. [37] Wang S. Y., Yang Y., Culpepper S. A., & Douglas J. A. (2018). Tracking skill acquisition with cognitive diagnosis models: A higher-order, hidden Markov model with covariates. Journal of Educational and Behavioral Statistics, 43(1), 57-87. [38] Wang W. Y., Song L. H., Chen P., Meng Y. R., & Ding S. L. (2015). Attribute-level and pattern-level classification consistency and accuracy indices for cognitive diagnostic assessment. Journal of Educational Measurement, 52(4), 457-476. [39] Yan D. L., Mislevy R. J., & Almond R. G. (2003). Design and analysis in a cognitive assessment. ETS Research Report Series, 2003(2), i-47. [40] Zhan P. D., Jiao H., Liao D. D., & Li F. M. (2019). A longitudinal higher-order diagnostic classification model. Journal of Educational and Behavioral Statistics, 44(3), 251-281. [41] Zhan P. D., Ma W. C., Jiao H., & Ding S. L. (2020). A sequential higher order latent structural model for hierarchical attributes in cognitive diagnostic assessments. Applied Psychological Measurement, 44(1), 65-83. [42] Zhang, S. S., & Chang, H. H. (2016). From smart testing to smart learning: How testing technology can assist the new generation of education. International Journal of Smart Technology and Learning, 1(1), 67-92. [43] Zheng C. J., He G. R., & Gao C. L. (2018). The information product methods: A unified approach to dual-purpose computerized adaptive testing. Applied Psychological Measurement, 42(4), 321-324. |