[1] 彭姓, 常若松, 李奇, 王爱君, 唐晓雨. (2019). 不同SOA下视觉返回抑制对视听觉整合的调节作用. 心理学报, 51(7), 759-771. [2] 杨伟平, 李胜楠, 李子默, 郭敖, 任艳娜. (2020). 老年人视听觉整合的影响因素及其神经机制. 心理科学进展, 28(5), 790-799. [3] 郑昊敏, 温忠麟, 吴艳. (2011). 心理学常用效应量的选用与分析. 心理科学进展, 19(12), 1868-1878. [4] Barsalou L. W., Simmons W. K., Barbey A. K., & Wilson C. D. (2003). Grounding conceptual knowledge in modality-specific systems. Trends in Cognitive Sciences, 7(2), 84-91. [5] Beauchamp, M. S., & Martin, A. (2007). Grounding object concepts in perception and action: Evidence from fMRI studies of tools. Cortex, 43(3), 461-468. [6] Brooks C. J., Chan Y. M., Anderson A. J., & McKendrick A. M. (2018). Audiovisual temporal perception in aging: The role of multisensory integration and age-related sensory loss. Frontiers in Human Neuroscience, 12, Article 192. [7] Calvert G. A., Campbell R., & Brammer M. J. (2000). Evidence from functional magnetic resonance imaging of crossmodal binding in the human heteromodal cortex. Current Biology, 10(11), 649-657. [8] Diaconescu A. O., Hasher L., & McIntosh A. R. (2013). Visual dominance and multisensory integration changes with age. NeuroImage, 65, 152-166. [9] Diederich, A., & Colonius, H. (2015). The time window of multisensory integration: Relating reaction times and judgments of temporal order. Psychological Review, 122(2), 232-241. [10] Diederich A., Colonius H., & Schomburg A. (2008). Assessing age-related multisensory enhancement with the time-window-of-integration model. Neuropsychologia, 46(10), 2556-2562. [11] Ernst, M. O., & Bülthoff, H. H. (2004). Merging the senses into a robust percept. Trends in Cognitive Sciences, 8(4), 162-169. [12] Freiherr J., Lundström J. N., Habel U., & Reetz K. (2013). Multisensory integration mechanisms during aging. Frontiers in Human Neuroscience, 7, Article 863. [13] Gau, R., & Noppeney, U. (2016). How prior expectations shape multisensory perception. NeuroImage, 124, 876-886. [14] Hairston W. D., Laurienti P. J., Mishra G., Burdette J. H., & Wallace M. T. (2003). Multisensory enhancement of localization under conditions of induced myopia. Experimental Brain Research, 152(3), 404-408. [15] Laurienti P. J., Burdette J. H., Maldjian J. A., & Wallace M. T. (2006). Enhanced multisensory integration in older adults. Neurobiology of Aging, 27(8), 1155-1163. [16] Liu, X. Z., & Yan, D. (2007). Ageing and hearing loss. The Journal of Pathology, 211(2), 188-197. [17] Mahoney J. R., Li P. C. C., Oh-Park M., Verghese J., & Holtzer R. (2011). Multisensory integration across the senses in young and old adults. Brain Research, 1426, 43-53. [18] Miller, J. (1982). Divided attention: Evidence for coactivation with redundant signals. Cognitive Psychology, 14(2), 247-279. [19] Miller, J. (1986). Timecourse of coactivation in bimodal divided attention. Perception and Psychophysics, 40(5), 331-343. [20] Parker, J. L., & Robinson, C. W. (2018). Changes in multisensory integration across the life span. Psychology and Aging, 33(3), 545-558. [21] Peiffer A. M., Mozolic J. L., Hugenschmidt C. E., & Laurienti P. J. (2007). Age-related multisensory enhancement in a simple audiovisual detection task. Neuroreport, 18(10), 1077-1081. [22] Ren Y. N., Ren Y. L., Yang W. P., Tang X. Y., Wu F. X., Wu Q., & Wu J. L. (2018). Comparison for younger and older adults: Stimulus temporal asynchrony modulates audiovisual integration. International Journal of Psychophysiology, 124, 1-11. [23] Sekiyama K., Soshi T., & Sakamoto S. (2014). Enhanced audiovisual integration with aging in speech perception: A heightened McGurk effect in older adults. Frontiers in Psychology, 5, Article 323. [24] Spear, P. D. (1993). Neural bases of visual deficits during aging. Vision Research, 33(18), 2589-2609. [25] Stein, B. E., & Stanford, T. R. (2008). Multisensory integration: Current issues from the perspective of the single neuron. Nature Reviews Neuroscience, 9(4), 255-266. [26] Stevenson R. A., Geoghegan M. L., & James T. W. (2007). Superadditive BOLD activation in superior temporal sulcus with threshold non-speech objects. Experimental Brain Research, 179(1), 85-95. [27] Stevenson R. A., Ghose D., Fister J. K., Sarko D. K., Altieri N. A., Nidiffer A. R., & Wallace M. T. (2014). Identifying and quantifying multisensory integration: A tutorial review. Brain Topography, 27(6), 707-730. [28] Stevenson, R. A., & James, T. W. (2009). Audiovisual integration in human superior temporal sulcus: Inverse effectiveness and the neural processing of speech and object recognition. NeuroImage, 44(3), 1210-1223. [29] Stevenson, R. A., & Wallace, M. T. (2013). Multisensory temporal integration: Task and stimulus dependencies. Experimental Brain Research, 227(2), 249-261. [30] Valyear, K. F., & Culham, J. C. (2010). Observing learned object-specific functional grasps preferentially activates the ventral stream. Journal Cognitive Neuroscience, 22(5), 970-984. [31] Wang B., Li P. Z., Li D. D., Niu Y., Yan T., Li T., & Xiang J. (2018). Increased functional brain network efficiency during audiovisual temporal asynchrony integration task in aging. Frontiers in Aging Neuroscience, 10, Article 316. [32] Winneke, A. H., & Phillips, N. A. (2011). Does audiovisual speech offer a fountain of youth for old ears? An event-related brain potential study of age differences in audiovisual speech perception. Psychology and Aging, 26(2), 427-438. [33] Yang W. P., Chu B. Q., Yang J. J., Yu Y. H., Wu J. L., & Yu S. Y. (2014). Elevated audiovisual temporal interaction in patients with migraine without aura. The Journal of Headache and Pain, 15(1), Article 44. [34] Yang, W. P., & Ren, Y. N. (2018). Attenuated audiovisual integration in middle-aged adults in a discrimination task. Cognitive Processing, 19(1), 41-45. |